
Algorithms

An algorithm is a sequence of ordered instructions that are followed
step-by-step to solve a problem. This does not need to be on a
computer.

Decomposition is the breaking down of a complex problem into
smaller more manageable problems that are easier to solve.

Abstraction allows us to remove unnecessary detail from a problem
leaving us with only the relevant parts of a problem thereby making
it easier to solve.

Algorithm Efficiency More than one algorithm can be used to solve
the same problem. Normally we use the algorithm that solves the
problem in the quickest time with the fewest operations or makes
use of the least amount of memory.

Dry run testing is carried out using trace tables. The purpose of the
trace tables is for the programmer to track the value of the variables
and outputs at each step of the program and to track how they
change throughout the running of the program.

Flowchart Symbols
We can represent algorithms using flowcharts

Start and Stop

Process – An operation that the
algorithm performs

Connector – Links all the other
symbols together

Input and Output of data that is
read in and written out

Decision is the same as a selection
(if then … else)

IF answer is “yes” THEN

 do something

ELSE IF answer is “no”

 do something else

ENDIF

Pseudocode

We can represent algorithms using pseudocode

 Example Python equivalent

Variable assignment

a 10 a = 10

Constant assignment

constant PI 3.142 PI = 3.142

Input a USERINPUT a = input()

Output OUTPUT “Bye” print(“Bye”)

Arithmetic Operators

Add
Multiply
Divide
Subtract
Integer division
Modulus (remainder)

+

*

/

-

a 7 DIV 2

a 7 MOD 2

+

*

/

-

a= 7 // 2

a = 7 % 2

Relational Operators

Less than

Greater than

Equal to

Not equal to

Less than or equal to

Greater than or equal
to

<

>

=

≠ or <>

≤

≥

<

>

==

!=

<=

>=

Boolean Operators

AND
OR
NOT

AND

OR

NOT

AND

OR

NOT

Selection

if ..

if .. else …

if ... else if … else

IF i > 2 THEN

 j 10

ENDIF

IF i > 2 THEN

 j 10

ELSE

 j 3

ENDIF

IF i ==2 THEN

 j 10

ELSE IF i==3

THEN

if i > 2:

 j=10

if i > 2:

 j=10

else:

 j=3

if i ==2:

 j=10

elif i==3:

 j=3

 j 3

ELSE

 j 1

ENDIF

else:

 j=1

Iteration

While loops

For loops

Repeat loops

a ← 1

WHILE a < 4

 OUTPUT a

 a ← a + 1

ENDWHILE

FOR a ← 0 TO 3

 OUTPUT a

ENDFOR

a ← 1

REPEAT

 OUTPUT a

 a ← a + 1

UNTIL a←4

while a<4:

 print(a)

 a=a+1

for a in

range(3):

 print(a)

Subroutines

procedure

Function (with
paramerters and
return)

SUB hello()

 OUTPUT “hello”

ENDSUB

SUB add(n)

 a ← 0

 FOR a ← 0 TO n

 a ← a + n

 ENDFOR

 RETURN a

ENDSUB

def hello():

 print(“hello”)

def add(n):

 a=0

 for a in

range(n+1):

 a=a+n

 return a

Built-in functions

Length of array

Random integer

LEN(a)

RANDOM_INT(0, 9)

len(a)

import random

random.randint(0,9)

Process
Start Stop

Input/Output

Decision Do something

Do something

else

Yes

No

